Combustion is the process of burning a substance. There are two types of combustion: **complete combustion** and **incomplete combustion**.

Complete combustion means that there is enough oxygen present for all of the **reactants** (the substances that need to react) to react *fully*. Complete combustion produces carbon dioxide and water. When burning *hydrocarbons* (compounds containing only hydrogen and carbon), the hydrogen oxidises (receives oxygen atoms) to form water, or H₂O, and the carbon oxidises to form carbon dioxide. In general, the complete combustion of a hydrocarbon is as follows:

COMPLETE COMBUSTION:

hydrocarbon (e.g. methane)	+	oxygen	 carbon dioxide	+	water
CH_4	+	20 ₂	 <i>CO</i> ₂	+	2H₂O

Incomplete combustion means that there is NOT enough oxygen present for all of the reactants to react fully. Incomplete combustion still produces water as before, but it produces carbon *monoxide,* rather than carbon dioxide. Incomplete combustion can also produce carbon by itself, which is released as soot. This is why test-tubes are not heated using a yellow flame; the yellow flame is combusting incompletely, and therefore it forms soot on the base of the test-tube.

hydrocarbon (e.g. methane)	+	oxygen	 carbon monoxide	+	water
CH_4	+	1.50 ₂	 СО	+	2H₂O

Carbon dioxide is also formed as a product of <u>respiration</u> and as a product of the <u>reaction</u> <u>between an acid and a carbonate</u>.